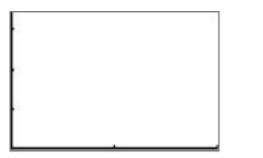
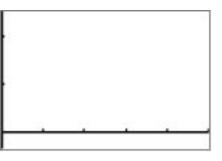
CALCULATOR LAB: NUMERICAL INTEGRATION II

In this lab we will examine the errors in numerical approximations of the integrals

$$\int_0^1 3x^2 dx \qquad \text{and} \qquad \int_1^9 \frac{3\sqrt{x}}{2} dx.$$


PART I: ANALYTICAL APPROACH


1. (a) Use the Fundamental Theorem of Calculus to evaluate $\int_0^1 3x^2 dx$. (In other words, find an antiderivative of $3x^2$ and use that antiderivative to evaluate the integral.) Note that this value is the actual value of the integral.

(b) Use the Fundamental Theorem of Calculus to evaluate $\int_{1}^{9} \frac{3}{2} \sqrt{x} dx$.

PART II: NUMERICAL APPROACH

2. (a) Sketch a graph of $3x^2$ with xMin = 0, xMax = 1 yMin = 0, yMax = 3.5 in the box on the left. Sketch a graph of $\frac{3\sqrt{x}}{2}$ with xMin = 0, xMax = 5 yMin = -0.5, yMax = 4 in the box on the right.

(b) Will LEFT(n) be an upper or lower bound for $\int_0^1 3x^2 dx$? For $\int_1^9 \frac{3}{2}\sqrt{x} dx$?

(c) Will RIGHT(n) be an upper or lower bound for $\int_0^1 3x^2 dx$? For $\int_1^9 \frac{3}{2}\sqrt{x} dx$?

(d) Will MID(n) be an upper or lower bound for
$$\int_0^1 3x^2 dx$$
? For $\int_1^9 \frac{3}{2}\sqrt{x} dx$?

(e) Will TRAP(n) be an upper or lower bound for
$$\int_0^1 3x^2 dx$$
? For $\int_1^9 \frac{3}{2}\sqrt{x} dx$?

3. (a) Use the ALLSUMS program to fill in the following table:

50				
n	LEFT(n)	RIGHT(n)	MID(n)	TRAP(n)
5				
10				
20				
50				

Approximations of
$$\int_0^1 3x^2 dx$$
.

(b) Use the table above and your solution to #1(a) to compute the following table:

n	LEFT(n)	RIGHT(n)	MID(n)	TRAP(n)
	- $\int_0^1 3x^2 dx$			
5				
10				
20				
50				

Error = Numerical Approximation - $\int_0^1 3x^2 dx$.

(c) What happens to the error term for LEFT(n) (and RIGHT(n)) when n is doubled? When n is multiplied by 5? When n is multiplied by 10?

(d) What happens to the error term for MID(n) (and TRAP(n)) when n is doubled? When n is multiplied by 5? When n is multiplied by 10? 4. (a) Use the AllSUMS program to fill in the following table:

	$J_1 = Z$			
n	LEFT(n)	RIGHT(n)	MID(n)	TRAP(n)
5				
10				
20				
50				

Approximations of
$$\int_{1}^{9} \frac{3\sqrt{x}}{2} dx$$
.

(b) Use the table above and your solution to #1(b) to compute the following table:

Error = Numerical Approximation -
$$\int_{1}^{9} \frac{3\sqrt{x}}{2} dx$$
.

n	LEFT(n)	RIGHT(n)	MID(n)	TRAP(n)
	- $\int_1^9 \frac{3\sqrt{x}}{2} dx$	$-\int_1^9 \frac{3\sqrt{x}}{2} dx$	$- \int_1^9 \frac{3\sqrt{x}}{2} dx$	$-\int_1^9 \frac{3\sqrt{x}}{2} dx$
5				
10				
20				
50				

- (c) What happens to the error term for LEFT(n) (and RIGHT(n)) when n is doubled? When n is multiplied by 5? When n is multiplied by 10?
- (d) What happens to the error term for MID(n) (and TRAP(n)) when n is doubled? When n is multiplied by 5? When n is multiplied by 10?

PART III: WRAP-UP

5. (a) In general, what do you expect to happen to the error term for LEFT(n) (and RIGHT(n)) when n is multiplied by k?

(b) In general, what do you expect to happen to the error term for MID(n) (and TRAP(n)) when n is multiplied by k?

6. (a) What else do you notice about the errors for MID(n) versus the errors for TRAP(n)?

(b) From your answer above, can you obtain a better numerical approximation method?